

Sommaire

PREFACE	5
METHODOLOGIE	6
I. TYPHOLOGIE DES COURS D'EAU	6
I – 1 : Ruisseau, tête de bassin	6
I – 2 : Torrent	7
I – 3 : Zone de gorge	7
I – 4 : Zone de piémont	8
I – 5 : Cours d'eau de plaine	8
I – 6 : Cours d'eau de plaine encaissée	9
TABLEAU DE DEFINITION DES TYPOLOGIE DE COURS D'EAU	۵
TABLEAU DE DEFINITION DES TIPOLOGIE DE COURS D'EAU	
II. LA CAPACITE D'AJUSTEMENT	10
III. DESCRIPTION DES INDICATEURS	11
A : INDICATEUR DE LA QUALITE DES HABITATS	11
1 – Indice annexes fluviales	11
2 – Indice cloisonnement	11
3 – Indice bois mort	11-12
4 – Indice ripisylve	12-13
5 – Indice de modification des écoulements	13
6 – Indice atterrissements	14
B : INDICATEUR DE L'ETAT DU LIT	15
1- Indice diversité des écoulements	15
2 – Indice fonctionnalités hydrauliques	15
3 – Indice cloisonnement	16
4 – Indice granulométrie	16
5 – Indice transport solide	16
6 – Indice méandrage	17
7 – Indice modification de la géométrie	18
8 – Indice altération du gabarit	18

C : INDICATEUR DE L'ETAT DES BERGES	
1 – Indice sous-berges	19
2 – Indice piétinement	19
3 – Indice anthropisation	19
4 – Indice ripisylve	20-21
QUALITE HYDROMORPPHOLOGIQUE GLOBALE	22

Dans le cadre de ses missions de conseil et d'animation du réseau des techniciens de Rivières du Tarn et Garonne, la CATER-ZH 82 a développé une application informatique permettant l'évaluation opérationnelle de la qualité hydromorphologique des cours d'eau à l'échelle du tronçon de rivière (de quelques centaines de mètres à quelques kilomètres).

Un large panel de paramètres et indicateurs a été sélectionné et évalué par rapport à un état de référence théorique basé sur les nombreux travaux de recherche et études réalisés par des laboratoires et structures reconnues (AFB, IRSTEA, BIOTEC...).

Ces derniers sont ensuite regroupés par thématique et pondérés selon leur importance dans la description des phénomènes observés afin d'obtenir une notation des trois compartiments suivants : Etat des <u>Berges</u>, Etat du <u>Lit</u>, Etat des Habitats.

L'intégration de ces trois compartiments permet finalement d'obtenir une appréciation de la **Qualité Hydromorphologique** du tronçon.

Une agrégation des résultats obtenus à l'échelle des tronçons peut également permettre d'obtenir une vision générale de l'état de conservation du milieu physique à l'échelle de la Masse d'eau.

Une fois la méthodologie assimilée et le logiciel pris en main, les Techniciens de Rivière peuvent mettre en œuvre la révision de leur programme pluriannuel de gestion (PPG) dans l'optique de l'atteinte du bon état écologique des cours d'eau.

Cet outil permet ainsi de valoriser les compétences professionnelles des techniciens de rivière et capitaliser l'ensemble des connaissances acquises au fil du temps sur leur territoire d'intervention.

METHODOLOGIE:

Cet outil s'appuie sur l'élaboration d'indicateurs diversifiés permettant d'obtenir une vision globale, critique et normée de la qualité hydromorphologique des cours d'eau .

Il s'appuie sur une grille de terrain organisant la prise de données sur <u>des paramètres</u> le plus souvent <u>descriptifs ou quantitatifs</u>.

Il est en effet important de limiter toute interprétation et analyse sur le terrain afin de ne pas biaiser le fonctionnement du modèle informatique.

Ces données sont ensuite saisies sur des formulaires informatiques et permettent ainsi de calculer <u>des indices</u> nécessaires pour le classement des tronçons selon une typologie proposée par l'Agence de l'Eau et adaptée au contexte local Tarn et Garonnais.

Le croisement des données de terrain et de la typologie du cours d'eau permet ensuite de caractériser la qualité des 3 compartiments suivants ou **Indices Intégrateurs** :

- Etat des berges,
- Etat du lit et des écoulements,
- Etat des habitats.

Ce système d'analyse permet en fin de compte d'agréger les 3 compartiments pour donner une qualité globale (<u>Indice Intégrateur Final</u>: <u>Qualité Hydromorphologique</u>), mais aussi de faire une « analyse thématique » afin d'identifier les paramètres déclassants et d'orienter de ce fait les programmes de restauration vers des mesures permettant d'envisager leur amélioration, but final de cette démarche.

I. TYPOLOGIE DES COURS D'EAU

Cette typologie classe les cours d'eau Tarn et Garonnais en 6 familles de cours d'eau. Il s'appuie pour cela sur les 5 paramètres :

- Largeur du lit
- Largeur vallée / largeur lit
- Pente du lit
- Substrat dominant
- Encaissement du lit

I – 1 : Ruisseau, tête de bassin

Largeur du lit ≤ 3 mètres.

Ruisseau de tête de bassin versant.

Sont regroupés dans cette famille tous les cours d'eau ayant un lit mineur (largeur du lit de plein bord) d'une largeur inférieure à 3 mètres.

Cette typologie simplifiée nécessite un niveau de précision supplémentaire pour l'analyse de certains indicateurs (ex : sinuosité du lit) mais permet toutefois d'obtenir un niveau de renseignement pertinent pour de nombreux paramètres (densité d'atterrissements, granulométrie).

I - 2: Torrent

Larg. lit majeur / Larg. lit mineur < 5.

1.4 % ≤ Pente du Lit

Substrat dominant : Blocs Galets.

Encaissement du lit < 8m.

Torrent.

Les torrents et rivières torrentielles sont caractérisées par un lit mineur rectiligne, une vallée encaissée et étroite, une pente du lit élévée (p>1,4%) et un substrat dominant à base de blocs rocheux et de galets.

I - 3 : Zone de gorge

5 ≤ Larg. lit majeur / Larg. lit mineur < 10

0.8% ≤ Pente du Lit < 1.4 %.

Substrat dominant : Blocs/Galets ou Galets/Gravier.

Encaissement du lit < 8m.

L'Aveyron en amont de Montricoux.

Cette typologie se rencontre essentiellement sur l'Aveyron et la Vère.

Ces secteurs se caractérisent par des vallées très encaissées et assez étroites (largeur vallée / largeur du lit compris entre 5 et 10), une pente du lit assez forte (de 0.8 à 1.3%) et une granulométrie du lit grossière (blocs, galets, gravier).

I - 4 : Zone de piémont

10 ≤ Larg. lit majeur / Larg. lit mineur

0.8% ≤ Pente du Lit < 1.4 %.

Substrat dominant : Galets/Gravier.

Encaissement du lit < 8m.

Zone de piémont.

Cette zone correspond à la transition entre les zones torrentielles ou de gorges et les zones de plaines. La vallée s'est fortement élargie et le lit a gagné en sinuosité mais la pente du lit reste encore élevée (de 0.8 à 1.3%) et la granulométrie des sédiments reste assez grossière (blocs, galets, gravier).

Nous nous trouvons dans une zone de dépôt et de transfert des sédiments de l'amont vers l'aval (cône de déjection).

I - 5 : Cours d'eau de plaine

10 ≤ Larg. lit majeur / Larg. lit mineur

0 % < Pente du Lit < 0.8 %.

Substrat dominant : Gravier/Sable ou Sable/Limon ou substratum.

Encaissement du lit < 8m.

Cours d'eau de plaine

Cette zone correspond aux secteurs de cours d'eau avec une vallée très large, une pente du lit assez faible (p< 0.8%) et un substrat à granulométrie fine (gravier, sable, limon).

Ces zones sont naturellement des zones à méandrage actif, avec des capacités de charriage assez limitées.

Ces zones sont fortement impactées par les activités humaines (urbanisation, agriculture, ouvrages hydrauliques, voierie...) et les secteurs préservés sont peu fréquents.

I - 6 : Cours d'eau de plaine encaissée

10 ≤ Larg. lit majeur / Larg. lit mineur

0 % < Pente du Lit < 0.8 %.

Substrat dominant : Galet/Gravier - Gravier/Sable ou Sable/Limon ou substratum.

8m ≤ Encaissement du lit.

Le Tarn à Villebrumier

Cette dernière typologie répond à une particularité des cours d'eau Tarn et Garonnais confluant dans la rivière Tarn.

En effet, le lit de la rivière Tarn s'est très fortement incisé durant la période du Würms (-10 000 ans) suite à la fin de la dernière période glacière, provoquant une érosion régressive de tous ces affluents depuis leur confluence jusqu'aux zones de piémont.

Ce phénomène a eu pour conséquence d'isoler ces cours d'eau d'une grande partie de leur lit majeur et de figer le tracé en plan de leur lit mineur.

Le paramètre « Encaissement du lit » (H>8m) a donc été rajouté aux paramètres permettant d'identifier les cours d'eau de plaine.

TABLEAU DE DEFINITION DES TYPOLOGIES DE COURS D'EAU

TYPOLOGIE	PARAMETRES	CLASSE	CODE 1	TOTAL 1	CODE 2	TOTAL 2	CLASSE
TETE DE BASSIN		Largeur du lit ≤ 3 m					
	Largeur vallée / largeur lit	< 5	1		1		
TORRENT	Pente du lit	p≥1,4%	1	4	1	4	X < 8
TORRENT	Substrat dominant	Blocs/galets	1	7	1	7	^ ~
	Encaissement du lit	< 8m	1		1		
	Largeur vallée / largeur lit	10 <e≤ 5<="" td=""><td>4</td><td></td><td>4</td><td></td><td></td></e≤>	4		4		
ZONE DE	Pente du lit	0,8%≤p<1,4%	2	8	2	9	8<=X<12
GORGE	Substrat dominant	Blocs/galets - Galet/gravier	1	٥	2	9	
	Encaissement du lit	< 8m	1		1		
	Largeur vallée / largeur lit	≥ 10	7		7		
ZONE DE	Pente du lit	0,8%≤p<1,4%	2	12	2	12	12= <x<14< td=""></x<14<>
PIEMONT	Substrat dominant	Galet/gravier	2		2	12	12=CAC14
	Encaissement du lit	< 8m	1		1		
	Largeur vallée / largeur lit	≥ 10	7		7		
COURS D'EAU	Pente du lit	0% <p<0,8%< td=""><td>3</td><td>44</td><td>3</td><td rowspan="2">16 14<</td><td>14<=X<17</td></p<0,8%<>	3	44	3	16 14<	14<=X<17
DE PLAINE	Substrat dominant	Gravier/sable - Sable/Limon- Substratum	3	14	5		14<=X<17
	Encaissement du lit	< 8m	1		1		
	Largeur vallée / largeur lit	≥ 10	7		7		
COURS D'EAU	Pente du lit	0% <p<0,8%< td=""><td>3</td><td></td><td>3</td><td></td><td></td></p<0,8%<>	3		3		
DE PLAINE ENCAISSE	Substrat dominant	Galet/Gravier-Gravier/sable - Sable/Limon- Substatum	3	17	5	20	20 X >= 17
	Encaissement du lit	≥ 8m	5		5		

II. LA CAPACITE D'AJUSTEMENT

La capacité d'ajustement d'un cours d'eau correspond à son potentiel à retrouver naturellement un équilibre dynamique après avoir subi des altérations dans sa géométrie et (ou) son fonctionnement hydrosédimentaire (curages, extractions, rectifications, endiguement, enrochements...).

Cette notion est essentielle pour le dimensionnement d'un programme de restauration adapté aux caractéristiques du cours d'eau.

La capacité d'ajustement est évaluée en couplant sa puissance spécifique avec l'érodabilité de ses berges (Cf. tableau ci-dessous).

La puissance (P) correspond au produit de la pente (J) par le poids volumique de l'eau (9810N/m3) et le débit journalier de crue de fréquence biennale (Q).

 $P = J \times Q \times 9810$

	NATURE DU PIED DE BERGE				
PUISSANCE SPECIFIQUE	Galet / Gravier A	Sable B	Limon C	Marne / Argile D	Roche / Blocs E
P ≥ 35 W/m² (1)	1	1	2	3	4
25 W/m²≤P<35 W/m² (2)	1	2	3	4	4
15 W/m ² <p<25 m<sup="" w="">2 (3)</p<25>	2	3	3	4	4
P < 15 W/m ² (4)	3	3	4	4	4

1	Forte
2	Moyenne
3	Faible
4	Nulle

Lorsque le débit de plein bord n'est pas connu, le technicien de rivière a la possibilité d'évaluer « à dire d'expert » la capacité d'ajustement du cours d'eau sur le tronçon étudié.

III. <u>DESCRIPTION DES INDICATEURS</u>

A- INDICATEURS DE LA QUALITE DES HABITATS

Ce compartiment s'attache à évaluer la qualité du biotope « Rivière » à partir d'indicateurs prenant en compte différents aspects du rôle et fonctionnement écologique du cours d'eau :

1- Indice annexes fluviales

Cet indice rend compte de la diversité et du nombre d'annexes fluviales présentes dans l'espace de mobilité du cours d'eau au niveau du tronçon inspecté (Bras morts, forêt alluviale, bras de crue, zones humides dépendant ou ayant été créées par le cours d'eau, champs d'expansion de crue fonctionnel). Il prend également en compte la connectivité du champ d'expansion de crue lors d'une inondation de fréquence biennale.

Les bras morts, bras secondaires et bras de crue, considérés comme des évènements ponctuels sont dénombrés pour chaque tronçon.

La connexion au lit majeur est évaluée de manière binaire (oui/non – 1 / 0).

ZONE HUMIDE – FORET ALLUVIALE	
Ratio = 1	4
Ratio ≥ 0,5	3
Ratio ≥ 0,2	2
Ratio >0	1
Ratio = 0	0

Les zones humides situées dans le lit majeur du cours d'eau ainsi que les boisements alluviaux peuvent s'étendre sur des linéaires très variables. Il est donc nécessaire de prendre en compte le ratio longueur (ZH ou boisement alluvial) sur linéaire du tronçon. Une note est ensuite attribuée selon le tableau ci-dessous :

N.B.: Les ripisylves de plus de 10m de large seront considérées comme des boisements alluviaux et comptés comme tels dans cet indicateur.

Ces résultats sont répartis dans quatre classes de densités auxquelles sont affectées une note allant de 1 à 4.

INDICE ANNEXES FLUVIALES	
Note ≥ 7	1
Note ≥ 4	2
Note > 0	3
Note = 0	4

2- Indice cloisonnement

INDICE DE CLOISONNEMENT	
0 seuil / km	0
0 < densité ≤ 0,2/km	1
0,2 < densité ≤ 0,5/km	2
0,5 < densité ≤ 1/km	3
1/km < densité	4

Cet indice correspond à la densité de seuils artificiels par km de rivière. Les seuils artificiels franchissables sont également pris en compte du fait de leur effet cumulé.

Les ruptures de pentes naturelles, dues à la présence d'embâcles ou de chutes naturelles ne sont pas prises en compte dans le calcul de cet indice. En effet, nous nous attachons uniquement à évaluer l'impact de l'anthropisation du milieu vis-à-vis de ses diverses fonctionnalités.

3- Indice bois mort

Cet indice prend en compte l'importance des débris ligneux pour la vie aquatique (caches, supports de vie, source de nourriture, lieu de reproduction, postes de chasse...). Ils participent à la diversification des faciès d'écoulement et donc de la granulométrie.

Les arbres morts de la ripisylve participent de cette même logique et sont le témoin du niveau d'artificialisation des boisements alluviaux.

Densité d'embâcles	
D > 12 U/km	1
6< D ≤ 12 U/km	2
3< D ≤ 6 U/km	3
D ≤ 3 U/km	4

Les embâcles sont la composante la plus connue du bois mort des cours d'eau. Ces débris ligneux sont lieux de reproduction, de nourrissage, de chasse et de repos pour la faune aquatique.

Ce sont également des éléments essentiels à la diversification des faciès d'écoulement.

Densité de laisses de crue	
D > 20 U/km	1
5< D ≤ 20 U/km	2
3< D ≤ 5 U/km	3
D ≤ 3 U/km	4

A la différence des embâcles, les laisses de crues ne se trouvent pas dans la section mouillée du cours d'eau, mais sur le talus de berge. Elles sont ici aussi des lieux de vie, de reproduction et de nourrissage pour une grande variété de faune inféodée au cours d'eau (coléoptères, reptiles, batraciens, petits mammifères...). Il convient de conserver ces éléments chaque fois que possible.

Densité de bois mort fixé	
Forte	1
Moyenne	2
Faible	3
Nulle	4

Cet indicateur permet de prendre en compte la présence / absence de bois mort fixé dans le fond du lit et (ou) en pied de berge.

L'importance de ce compartiment peut, le cas échéant justifier la mise en place de troncs, branchages fixés dans le fond du lit à l'occasion des travaux de restauration / entretien.

Ce compartiment et le suivant sont évalués « à dire d'expert » par le technicien en charge du diagnostic.

Densité d'arbres morts	
Forte	1
Moyenne	2
Faible	3
Nulle	4

On s'attache ici à prendre en compte la présence / absence d'arbres morts sur pied ou dépérissants.

Cet élément de l'écosystème « rivière » est très important pour une grande partie de la biodiversité des cours d'eau et milieux riverains (oiseaux nicheurs, chauves-souris, coléoptères...).

Les travaux de gestion de la ripisylve doivent à minima préserver les arbres morts ne présentant pas de risque immédiat pour le

voisinage, voire favoriser leur « apparition », notamment au travers de programme de lutte contre des espèces envahissantes (robinier, ailanthe, négundo...) en privilégiant le cerclage à l'abattage.

INDICE BOIS MORT	
4 à 6	1
7 à 9	2
10 à 12	3
13 à 16	4

Cet indice permet ainsi de valoriser un compartiment essentiel pour le bon fonctionnement écologique et morphologique des cours et pourtant trop souvent sous-estimé par les gestionnaires de cours d'eau.

4- Indice ripisylve

L'indice ripisylve rend compte de l'état de la végétation riveraine, compartiment primordial dans le fonctionnement écologique mais aussi hydraulique du cours d'eau : support de vie, source de nourriture, lieu de reproduction, stabilisation des berges, filtration des pollutions diffuses, limitation du réchauffement des eaux, ralentissement des vitesses d'écoulement...

Les indicateurs retenus sont les suivants :

Etat sanitaire :

ETAT SANITAIRE	
Bon	2
Mauvais	3
Très mauvais	4

Cet indicateur prend en compte l'état sanitaire global de la ripisylve.

Ne doivent pas être retenus le dépérissement naturel de quelques vieux arbres ou arbres écorcés suite aux crues mais uniquement les dépérissements massifs suite à une attaque parasitaire (graphiose de l'orme, phytophtora de l'aulne...), la mauvaise gestion de la ripisylve (passage d'épareuse...) ou à l'inadaptation d'une essence au milieu

(dessèchement de peupliers...).

Adaptation / stabilité :

ADAPTATION / STABILITE	
Bon	2
Mauvais	3
Très mauvais	4

Cet indicateur permet d'évaluer l'adaptation des essences présentes aux contraintes du milieu. Un peuplement uniquement composé de peuplier de culture par exemple ne sera pas considéré comme étant adapté.

- Etagement :

ETAGEMENT	
Bon	2
Mauvais	3
Très mauvais	4

- Continuité :	
CONTINUITE	
Bon	2
Mauvais	3

Très mauvais

Cet indicateur permet d'évaluer la présence de toutes les strates de la végétation au niveau de la ripisylve.

Cette information est effet révélatrice de la capacité du peuplement à se régénérer, se perpétuer et assurer ces fonctions naturelles (maintien des berges, captage des nutriments, réservoir de biodiversité...).

Cet indicateur permet d'évaluer la continuité du corridor boisé sur les deux berges du cours d'eau.

Ce critère est un élément important de l'évaluation de l'état de la ripisylve (continuité écologique, filtre contre les polluants).

- Diversité :

DIVERSITE	
Bon	2
Mauvais	3
Très mauvais	4

La diversité du peuplement nous renseigne sur la capacité de ce dernier à résister face aux agressions et stress qu'il subi au fil des crues, sècheresses, tempêtes, attaques parasitaires...

Un peuplement diversifié sera plus à même de faire face à ces aléas du fait de son grand choix d'espèces, de la dispersion

des individus et de la complémentarité interspécifique (systèmes racinaires, espèces héliophiles...).

Largeur :

LARGEUR	
Supérieur à 8m.	0
de 3 à 8 m	2
Rideau (< 3m)	3
Absente	4

Cet indice est obtenu en faisant la moyenne des niveaux de largeur de la ripisylve sur les deux berges. Les valeurs avec une décimale sont arrondies au chiffre supérieur.

Cette donnée nous permet de juger de la qualité du peuplement et de sa capacité à remplir ses fonctions (filtre, maintien des berges, diversité des habitats...). En effet, une largeur minimale est nécessaire pour permettre une

dynamique propre aux peuplements forestiers alluviaux (effet de lisière, gradient bois tendre / bois dur.

Pour les cours d'eau ayant une largeur du lit mineur supérieure à 30 mètres :

4

LARGEUR	
Supérieur à 15m.	0
De 8 à 15 m.	2
de 3 à 8 m	3
Rideau	3
Absente	4

L'introduction de cette notion de gabarit du lit mineur permet ainsi de tenir compte de l'effet « berge » des grands cours d'eau qui ont souvent des talus de berge très larges et pour lesquels une ripisylve de plus de 8m de large n'est clairement pas une situation « optimale »

INDICE RIPISYLVE	
10 à 11	1
12 à 15	2
16 à 19	3
20 à 24	4

La pondération des ces 6 indicateurs retenus pour qualifier la qualité de la ripisylve permet d'obtenir un indice de qualité allant de 1 à 4.

5- Indice de modification des écoulements

- Taux de rectification

TAUX DE RECTIFICATION	
Linéaire rectifié / linéaire total	

Part du linéaire visible clairement sur le terrain ayant été rectifié dans le cadre de travaux d'aménagement hydraulique récent (assainissement de terres agricoles, remembrement, travaux routiers, urbanisation...) sans cicatrisation du cours d'eau.

Taux de recalibrage

TAUX DE RECA	LIBRAGE
Linéaire recalibré / I	inéaire total

Part du linéaire ayant fait l'objet de travaux de recalibrage afin d'augmenter le gabarit et donc la capacité d'écoulement du cours d'eau (assainissement des terres, lutte contre les inondations...).

Taux de curage

TAUX DE CURAGE

Linéaire curé / linéaire total

Ce taux met en évidence la part de linéaire du tronçon impacté par des travaux plus ou moins récents de curage du lit. Le curage provoque la disparition du matelas alluvial, l'enfoncement du lit, la banalisation des faciès et des habitats...

Taux de busage

TAUX DE BUSAGE

Linéaire busé / linéaire total

Ce taux met en évidence la part de linéaire impacté par le busage du lit. Ce type d'aménagement provoque de nombreux désordres dans le fonctionnement du cours d'eau (obstacles pour la faune aquatique, destruction d'habitats, disparition du champs d'expansion de crue, absence d'auto-épuration...)

- Taux de Plan d'eau

TAUX DE PLAN D'EAU

Linéaire rectifié / linéaire total

Ce taux met en évidence la part de linéaire du tronçon impacté par la présence d'un ouvrage en travers. La présence d'un plan d'eau artificiel modifie les vitesses d'écoulement et les hauteurs d'eau ; la dynamique du cours d'eau s'en trouve fortement altérée.

INDICE MODIFICATION DES ECOULEMENTS	
0%	0
0 % < linéaire < 10%	1
10% ≤ linéaire < 20%	2
20% ≤ linéaire < 60%	3
60% ≤ linéaire ≤ 100%	4

Cet indice met en évidence l'impact d'aménagements et travaux lourds sur les écoulements du cours d'eau.

Les critères pris en compte sont les taux de rectification, de recalibrage, de plan d'eau, de curage et de busage sur le tronçon étudié. Le taux le plus élevé est retenu pour caractériser cet indice. Les trois premiers indicateurs sont également repris par l'indice de modification des berges, mettant ainsi bien en évidence l'impact fort de ces aménagements sur l'hydromorphologie du cours d'eau.

6- Indice atterrissements

INDICE ATTERRISSEMENTS		
8 U/km < Densité	1	
5 < Densité ≤ 8 U/Km	2	
1 < Densité ≤ 5 U/Km	3	
Densité ≤ 1 U/Km	4	

Cet indice rend compte de la diversification du lit et des écoulements par la présence d'îles et atterrissements dans le cours d'eau.

Cet indicateur n'est pertinent que pour les cours d'eau ayant un lit assez large (Largeur >4m).

Il n'est pas pris en compte en tête de BV, vu la difficulté pour appréhender cet indice sur ce type de tronçon (identification

hasardeuse entre un banc alluvial et le fond du lit du fait des faibles hauteurs d'eau observées la plupart du temps).

A INDICE INTEGRATEUR DE LA QUALITE DES HABITATS.		
	4 à 6	1
	7 à 12	2
	13 à 17	3
	18 à 24	4

Ces 6 indices permettent en les intégrant, d'obtenir une image représentative de la qualité globale des habitats aquatiques et (ou) inféodés aux cours d'eau.

Quatre classes de qualité (1-2-3-4) ont été définies en classant les tronçons d'analyse selon la note cumulative qu'ils ont obtenue pour chaque indice analysé.

Attention !! La répartition des classes pour un tronçon en typologie « Tête de Bassin » sera différente :

Α	INDICE INTEGRATEUR DE LA QUALITE DES HABITATS.	
	3 à 5	1
	6 à 10	2
	11 à 15	3
	16 à 20	4

En effet, vu l'étroitesse du lit mouillé et le risque de confusion entre le fond du lit et les réels atterrissements, cet indice reste très délicat à utiliser sur cette typologie de cours d'eau. Pour cela l'indice atterrissement ne sera pas calculé et la notation sera différente pour un tronçon en typologie « Tête de Bassin ». La répartition des classes de qualité se fera au regard du tableau ci-

contre pour l'indice intégrateur de la Qualité des Habitats.

B - INDICATEURS DE L'ETAT DU LIT

1- Indice diversité des écoulements

ECOULEMENTS	TORRENT	LARGES RIVIERES (L>30m)	AUTRES
1 type	4	4	4
2 à 3 types	2	2	3
4 à 5 types	1	1	2
6 types	1	1	1

Cet indicateur participe à l'évaluation de l'état du lit. Il est calculé en dénombrant les différents faciès d'écoulement présents sur le tronçon.

Les types de faciès proposés sont au nombre de 6 : radier, plat lentique, plat lotique, mouille, rapide et cascade.

Cette évaluation fait abstraction des types de faciès auxquels nous avons affaire. Nous partons du postulat qu'une grande diversité des types d'écoulement est révélatrice d'un bon état physique du cours d'eau. Cette note est cependant

pondérée par la typologie du cours d'eau.

En effet les grandes rivières et les torrents auront naturellement une diversité de faciès moins élevée que les autres, à qualité égale.

2- Indice fonctionnalités hydrauliques

Connexion au lit majeur :

CONNEXION DU LIT MAJEUR		
Oui	1	
Non	2	

Ce paramètre permet la mise en évidence du fonctionnement hydrologique du cours d'eau avec son lit majeur ou champ d'expansion de crue.

Les cours d'eau modifiés se trouvent souvent isolés de leurs champs de crue, altérant leur fonctionnement.

Colmatage du lit :

COLMATAGE DU LIT	
Nul	1
Faible	2
Moyen	3
Important	4

Cet indice prend en compte le colmatage biologique (biofilm) du lit du cours d'eau ainsi que la présence de sédiments fins déposés sur des sédiments plus grossiers, cohérents avec la typologie du cours d'eau sur la zone étudiée. Ce colmatage est le signe d'une dégradation de la qualité physico-chimique de l'eau, du fonctionnement hydromorphologique du cours d'eau (absence de chenal d'étiage, succession de plans d'eau, rectification, recalibrage, destruction de

la ripisylve...), mais aussi du bassin versant (érosion des sols, fuite des nutriments vers le cours d'eau...)...

Chenal d'étiage :

21101141 4 041490 1		
CHENAL D'ETIAGE		
Oui	1	
Non	2	

Cet indicateur est pris en compte sous une forme binaire (oui / non).Il permet d'évaluer la capacité du cours d'eau à supporter les période de faible débit en concentrant la lame d'eau et en maintenant des vitesses d'écoulements suffisantes pour limiter le réchauffement des eaux, limiter le colmatage...

- Altération du débit naturel :

ALTERATION DU DEBI NATUREL	
Non	1
Oui	3

Cet indicateur est pris en compte sous une forme binaire (oui / non).ll intègre les problèmes liés aux prises d'eau sans restitution à l'aval (plan d'eau, grosses station de pompage), ou plus bas sur le cours d'eau (Prise d'eau hydro-électrique). Ce facteur impacte fortement la vie et la dynamique du cours d'eau.

- Intensité des assecs :

INTENSITE DES ASSECS	
Faible	1
Fort	2

Ce paramètre est pris en compte sous forme binaire (faible/forte). Il permet de mettre en évidence la problématique des assecs récurrents qui pèsent sur certains tronçons. Ou au contraire, les secteurs alimentés de façon permanente par des sources et ne souffrant que rarement d'assec régulier (asséché moins d'une année

sur 5). Ce facteur impacte fortement la vie aquatique, la température des eaux ainsi que le développement algal et le colmatage. <u>Pour la typologie « Tête de bassin » ce facteur n'entre pas dans le calcul du fait que son écoulement peut être naturellement intermittent.</u>

INDICE FONCTIONNALITE HYDRAULIQUE Typologies autre que « Tête de Bassin Versant »		
5 à 6	1	
7 à 8	2	
9 à 11	3	
12 à 15	4	

Cet indice intermédiaire intègre les différents indicateurs décrits ci-dessus, permettant ainsi de simplifier la lecture de la grille d'analyse.

Il est obtenu en faisant la somme de ces indices. Les résultats sont ensuite ventilés entre les 4 classes décrites cicontre.

INDICE FONCTIONNALITE HYDRAULIQUE Typologie « Tête de Bassin Versant » uniquement !		
4	1	
5 à 7	2	
8 à 10	3	
11 à 13	4	

3- Indice cloisonnement

INDICE DE CLOISONNEMENT	
0 seuil / km	0
0 < densité ≤ 0,2/km	1
0,2 < densité ≤ 0,5/km	2
0,5 < densité ≤ 1/km	3
1/km < densité	4

Cet indice est repris dans l'évaluation de l'état du lit afin de prendre en compte l'impact des obstacles dans le lit vis-à-vis du transport solide, du profil en long et de la chenalisation des cours d'eau.

4- Indice granulométrie

INDICE GRANULOMETRIE				
Bon	1			
Moyen	2			
Dégradé	3			
Très Dégradé	4			

L'évaluation de la qualité de cet indice s'appuie sur la typologie du cours d'eau, tel que défini ci-contre.

L'indice granulométrie permet d'évaluer la qualité du transport solide du
cours d'eau sur le tronçon, mais aussi la qualité de ses habitats
aquatiques (ex: frayères) et ses capacité d'autoépuartion (espace
interstitiel, micro-habitats)
La double utilisation de ce critère permet de lui donner un poids plus

La double utilisation de ce critère permet de lui donner un poids plus grand dans le calcul de l'indice déterminant l'état du lit.

	TETE DE BASSIN	TORRENT	GORGES	PIEMONT	PLAINE	PLAINE ENCAISSEE
BLOC / GALETS	Bon	Bon	Bon	Bon	Moyen	Moyen
GALETS / GRAVIERS	Bon	Bon	Bon	Bon	Bon	Bon
GRAVIERS / SABLE	Moyen	Mauvais	Moyen	Moyen	Bon	Bon
SABLE / LIMON	Mauvais	Mauvais	Mauvais	Mauvais	Moyen	Moyen
LIMON/VASE	Mauvais	Moyen	Mauvais	Mauvais	Mauvais	Mauvais
SUBSTRATUM	Mauvais	Moyen	Mauvais	Mauvais	Mauvais	Mauvais

5- Indice transport solide

- Indice érosions

INDICE EROSION	
Typologie = Torrent ou Piémont ou 6 U/km < densité	1
3 U/km < densité ≤ 6 U/km	2
1 U /km < densité ≤ 3 U/km	3
densité ≤ 1 U/km	4

Cet indicateur tente d'évaluer la dynamique fluviale à l'œuvre sur le tronçon et des capacités du cours d'eau à se régénérer suite à des dégradations d'ordre anthropiques.

La notation de cet indice prend en compte la typologie du cours d'eau; en effet, les cours d'eau possédant une forte énergie spécifique ont naturellement une densité d'érosions importante et ne sont donc noté par défaut comme étant en bon état.

- Indice atterrissements

INDICE ATTERRISSEMENTS					
8 U/km < Densité	1				
5 < Densité ≤ 8 U/Km	2				
1 < Densité ≤ 5 U/Km	3				
Densité ≤ 1 U/Km	4				

Cet indice rend compte de la diversification du lit et des écoulements par la présence d'îles et atterrissements dans le cours d'eau.

Cet indicateur n'est pertinent que pour les cours d'eau ayant un lit assez large (Largeur > 3m).

Il n'est pas pris en compte dans le calcul pour les tronçons présentant une typologie de tête de Bassin Versant, vu la

difficulté pour appréhender cet indice sur ce type de tronçon (identification hasardeuse entre un banc alluvial et le fond du lit du fait des faibles hauteurs d'eau observées la plupart du temps).

- Indice granulométrie

INDICE GRANULOMETRIE	
Bon	1
Moyen	2
Dégradé	3

L'indice granulométrie est repris afin d'évaluer la qualité du transport solide du cours d'eau sur le tronçon (Cf. paragraphe ci-dessus).

La double utilisation de ce critère permet de lui donner un poids plus grand dans le calcul de l'indice déterminant la l'état du lit.

- Indice incision du lit

% du linéaire incisé Profondeur d'incision	0 ≤ linéaire < 5 %	5 ≤ linéaire < 25%	25 ≤ linéaire < 70%	70 ≤ linéaire ≤ 100%
de 0 à 30 cm	Bon	Peu impacté	Dégradé	Fortement dégradé
de 30 à 60 cm	Bon	Dégradé	Fortement Dégradé	Fortement dégradé
+ de 60 cm.	Bon	Fortement dégradé	Fortement Dégradé	Fortement dégradé

Cet indice dépend de la part du linéaire incisé sur le tronçon étudié et de la profondeur de l'incision en question. Ceci traduit un certain niveau de dégradation du fonctionnement du système "cours d'eau" (transport solide, connexion avec le lit majeur, niveau de la nappe d'accompagnement...

INDICE TRANSPORT SOLIDE pour toutes les typologies sauf « Tête de Bassin Versant »			
4 à 5	1		
6 à 9	2		
10 à 13	3		
14 et +	4		

L'indice transport solide prend en compte un compartiment essentiel de l'hydromorphologie, à savoir le transit des matériaux de l'amont vers l'aval. Il est à mettre en relation avec l'incision du lit, la densité d'atterrissements et la densité d'érosions et la granulométrie des sédiments présents dans le lit du cours d'eau.

INDICE TRANSPORT SOLIDE pour la Typologie Tête de Bassin Versant uniquement.			
3	1		
4 à 6	2		
7à 10	3		
11 et +	4		

6- Indice méandrage

L'indice méandrage permet une analyse fine du niveau d'anthropisation et du cumul d'opération de curage, rectification, recalibrage par l'homme au cours du temps.

En effet, il n'est parfois plus possible d'observer et mettre en évidence de manière précise des travaux anciens ayant modifié la géométrie du lit d'un cours d'eau; On peut par contre facilement noter les conséquences qu'ils ont eu sur le fonctionnement de ce dernier en analysant les paramètres énoncés précédemment.

On peut ainsi évaluer la dérive du coefficient de sinuosité du tronçon par rapport à une sinuosité moyenne propre à chaque type de cours d'eau.

						TE	TE DE BAS	SIN
COEF SINUOSITE	TORRENT	GORGES	PIEMONT	PLAINE	PLAINE ENCAISSEE	pente lit>=2	pente lit=1 L/I = 1	pente lit=1 L/I = 7
Coef. < 1,05 (1)	Bon	Moyen	Dégradé	Mauvais	Mauvais	Bon	Mauvais	Mauvais
1.05 < Coef. < 1,5 (2)	Bon	Bon	Moyen	Dégradé	Moyen	Bon	Bon	Moyen
1,5 < Coef. (3)	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon

7- Indice modification de la géométrie

- Taux de rectification

TAUX DE RECTIFICATION

Linéaire rectifié / linéaire total

Part du linéaire visible clairement sur le terrain ayant été rectifié dans le cadre de travaux d'aménagement hydraulique récent (assainissement de terres agricoles, remembrement, travaux routiers, urbanisation...) sans cicatrisation du cours d'eau.

- Taux de recalibrage

TAUX DE RECALIBRAGE

Linéaire recalibré / linéaire total

Part du linéaire ayant fait l'objet de travaux de recalibrage afin d'augmenter le gabarit et donc la capacité d'écoulement du cours d'eau (assainissement des terres, lutte contre les inondations...).

- Taux de busage

TAUX DE BUSAGE

Linéaire busé / linéaire total

Part du linéaire ayant été busé ou recouvert dans le cadre de travaux d'aménagement urbain ou agricole.

La disparition complète du cours d'eau dans le paysage détruit entièrement le milieu et ses fonctionnalités ;

- Taux de curage

TAUX DE CURAGE

Linéaire curé / linéaire total

Ce taux met en évidence la part de linéaire du tronçon impacté par des travaux plus ou moins récents de curage du lit. Le curage provoque la disparition du matelas alluvial, l'enfoncement du lit, la banalisation des faciès et des habitats...

INDICE MODIFICATION GEOMETRIE				
Taux = 0%	1			
Taux < 10%	2			
Taux <60%	3			
Taux >= 60%	4			

dessus.

Cet indice reflète le niveau d'altération de la géométrie naturelle des berges, qui, selon la typologie du cours d'eau sont naturellement très diversifiées (plus ou moins inclinées, dissymétriques dans les zones de méandrage, sous cavées et érodées en extrados de méandre)... Les travaux lourds parfois réalisés sur les berges tendent à en banaliser et simplifier le profil.

Cet indice se base sur le plus défavorable des quatre taux décrits ci-

8- Indice altération du gabarit

INDICE ALTERATION DU GABARIT				
Si L/H >= 4	1			
Si L/H >= 3	2			
Si L/H >= 2	3			
Si L/H < 2	4			

plaine encaissée)

Cet indice permet d'évaluer le degré d'artificialisation de la géométrie
du lit et des berges du cours d'eau en appréciant l'impact de travaux
souvent anciens, ne laissant pas de traces tangibles sur le terrain
(curage, rectification, recalibrage difficiles à mettre en évidence.

Cet indice part du postulat qu'il existe un rapport entre la largeur d'un cours d'eau (L) et la profondeur de son lit (H).

N.B.: Cet indice sera par défaut égal à 1 pour les cours d'eau de

В	INDICE INTEGRATEUR DE LA QUALITE DU LIT	
6 à 10		1
	11 à 19	2
	20 à 27	3
	28 et +	4

On obtient un indice global de l'état du lit en cumulant les sept indices précédents.

Les résultats de cette somme sont ensuite classés comme indiqué dans le tableau ci-contre.

C - INDICATEURS DE L'ETAT DES BERGES

Ce compartiment met en évidence le niveau d'altération, ou à l'inverse, celui de naturalité, des berges. Pour cela, les indicateurs retenus évaluent la pression des paramètres les plus souvent observés sur les cours d'eau tarnais, à savoir : l'artificialisation des berges, le piétinement du bétail, la disparition des sous-berges...

L'analyse croisée de ces indices donnent au final une note permettant d'évaluer la qualité globale du compartiment berge à l'échelle du tronçon de cours d'eau.

1- Indice sous-berges

INDICE SOUS BERGES	
Forte	1
Moyenne	2
Faible	3
Nulle	4

parti d'une approche qualitative a été préférée.

Ce paramètre rend compte de la qualité des habitats, mais également du degré de "naturalité" des berges.

En effet, l'apparition de sous berge ne peut se faire que dans certaines conditions (possibilité d'érosion des berges en extrados de méandre, présence d'une végétation bien développée en pied de berge...).

Au vu de la difficulté pour définir des classes de densité en fonction du type de cours d'eau ainsi que leur comptage sur le terrain, le

2- Indice piétinement

INDICE PIETINEMENT	
linéaire ≤ 5%	0
5% < linéaire ≤ 12%	1
12% < linéaire ≤ 30%	2
30% < linéaire ≤ 60%	3
60% < linéaire	4

Le piétinement des berges par le bétail est un paramètre essentiel dans la dégradation des milieux aquatiques.

Un piétinement excessif dégrade les berges, leur végétation, effondre les abris sous berges, élargi et colmate le lit...

3- Indice anthropisation

TAUX DE RECTIFICATION

Linéaire rectifié / linéaire total

Ce taux nous renseigne sur le degré d'artificialisation des berges suite à des travaux de reprofilage ou de rectification du cours d'eau.

TAUX DE RECALIBRAGE

Linéaire recalibré / linéaire total

Ce taux nous renseigne sur le degré d'artificialisation des berges suite à des travaux de recalibrage du cours d'eau.

TAUX DE DEPLACEMENT

Linéaire déplacé / linéaire total

Ce taux nous renseigne sur le degré d'artificialisation du lit par déplacement de cours. Sur le terrain cela se traduit par un positionnement du cours d'eau plaqué en bordure de pente (pour ne pas « gêner » l'usage de la parcelle) plutôt qu'au point bas du lit majeur. Ce positionnement souvent surélevé par rapport à

l'emplacement naturel accentue le risque d'étiage et limite le ressuyage des sols en période humide.

TAUX DE CURAGE

Linéaire curé / linéaire total

Ce taux nous renseigne sur l'altération du lit du cours d'eau du au curage. Ce phénomène

TAUX D'ENDIGUEMENT

(Linéaire de digues/2) / linéaire total

Ce taux nous renseigne sur le degré d'artificialisation des berges suite à des travaux d'endiguement du cours d'eau.

Ces aménagements de berge sont ramenés au linéaire de rivière en divisant leur longueur par 2.

ARTIFICIALISATION DE BERGES

Linéaire de Génie civil+(Génie végétal /4))/2 / linéaire total) Ce taux nous renseigne sur le degré d'artificialisation des berges suite à des travaux de protection de berges. Ces aménagements de berge sont ramenés au linéaire de rivière en divisant leur longueur par 2.

Les ouvrages de génie végétal sont divisés arbitrairement par 4

car leur incidence sur l'hydromorphologie du cours d'eau est moindre.

INDICE ANTHROPISATION	
Taux ≤ 5%	1
5% < Taux ≤ 12%	2
12% < Taux ≤ 50%	3
50% < Taux	4

Cet indice prend en compte les différents taux expliqués ci-dessus. Le taux le plus discriminant des six est retenu pour donner la note globale.

4- Indice ripisylve

Nous avons fait le choix d'intégrer l'indice ripisylve à la fois pour « la Qualité des Habitats » et ici pour « la Qualité des Berges ». En effet, une ripisylve présente avec des espèces adaptées au maintien des berges, de façon large, continue, diversifiée en âge et en espèces le long du cours d'eau donnera à la berge le maximum de fonction au niveau hydraulique et écologique. Il s'agit pour nous d'un compartiment incontournable et primordial pour l'atteinte du bon état écologique des cours d'eau.

- Etat sanitaire :

ETAT SANITAIRE	
Bon	2
Mauvais	4

Cet indicateur prend en compte l'état sanitaire global de la ripisylve.

Ne doivent pas être retenus le dépérissement naturel de quelques vieux arbres ou arbres écorcés suite aux crues mais uniquement les dépérissements massifs suite à une attaque

parasitaire (graphiose de l'orme, phytophtora de l'aulne...) ou à l'inadaptation d'une essence au milieu (dessèchement de peupliers...).

Adaptation / stabilité :

ADAPTATION / STABILITE	
Bon	2
Mauvais	4

Cet indicateur permet d'évaluer l'adaptation des essences présentes aux contraintes du milieu. Un peuplement uniquement composé de peuplier de culture par exemple ne sera pas considéré comme étant adapté.

- Etagement :

ETAGEMENT	
Bon	2
Mauvais	4

Cet indicateur permet d'évaluer la présence de toutes les strates de la végétation au niveau de la ripisylve.

Cette information est effet révélatrice de la capacité du peuplement à se régénérer, se perpétuer et assurer ces fonctions naturelles (maintien des berges, captage des

nutriments, réservoir de biodiversité...).

- Continuité :

CONTINUITE	
Bon	2
Mauvais	4

Cet indicateur permet d'évaluer la continuité du corridor boisé sur les deux berges du cours d'eau. Assurant ainsi son rôle de vecteur de circulation des espèces mais aussi de maintien continu de la berge.

- Diversité:

DIVERSITE	
Bon	2
Mauvais	4

La diversité du peuplement nous renseigne sur la capacité de ce dernier à résister face aux agressions et stress qu'il subit au fil des crues, sècheresses, tempêtes, attaques parasitaires...

Un peuplement diversifié sera plus à même de faire face à ces aléas du fait de son grand choix d'espèces, de la dispersion des individus et de la complémentarité interspécifique (systèmes racinaires, espèces héliophiles...).

- Largeur :

LARGEUR	
Supérieur à 8m.	1
de 3 à 8 m	2
Rideau (< 3m)	3
Absente	4

Cet indice est obtenu en faisant la moyenne des niveaux de largeur de la ripisylve sur chacune des deux berges. Les valeurs avec une décimale sont arrondies au chiffre supérieur. Cette donnée nous permet de juger de la qualité du peuplement et de sa capacité à remplir ses fonctions (filtre, maintien des berges, diversité des habitats...). En effet, une largeur minimale est nécessaire pour permettre une

dynamique propre aux peuplements forestiers alluviaux (effet de lisière, gradient bois tendre / bois dur.

Pour les cours d'eau ayant une largeur du lit mineur supérieure à 30 mètres :

,	
LARGEUR	
Supérieur à 15m.	0
De 8 à 15 m.	1
de 3 à 8 m	2
Rideau (< 3m)	3
Absente	4

L'introduction de cette notion de gabarit du lit mineur permet ainsi de tenir compte de l'effet « berge » des grands cours d'eau qui ont souvent des talus de berge très larges et pour lesquels une ripisylve de plus de 8m de large n'est clairement pas une situation « optimale »

INDICE RIPISYLVE	
11 à 12	1
13 à 15	2
16 à 19	3
20 à 24	4

La pondération de ces 6 indicateurs retenus pour qualifier la qualité de la ripisylve permet d'obtenir un indice de qualité allant de 1 à 4.

C	INDICE INTEGRATEUR DI QUALITE DES BERGE	
	3 à 5	1
	6 à 8	2
	3	
13 à 16		4

On obtient un indice global de l'état des berges en cumulant les notes des quatre indicateurs exposés ci-dessus. Les résultats sont ensuite classés comme indiqué dans le tableau ci-contre.

QUALITE HYDROMORPHOLOGIQUE GLOBALE

La qualité hydromorphologique du tronçon de cours d'eau étudié nous est donnée par l'agrégation des trois compartiments qui le composent, comme détaillé ci-dessous.

	ITEGRATEUR FINAL DE LA HYDROMORPHOLOGIQUE »
A+B+C = 3 à 4	PRESERVE
A+B+C = 5 à 7	PEU IMPACTE
A+B+C = 8 à 9	DEGRADE
A+B+C = 10 à 12	FORTEMENT DEGRADE

Quatre classes de qualités ont été découpées afin de ventiler cette notation de "Préservé" à "Fortement Dégradé".

Les 3 compartiments sont d'égale valeur dans l'analyse finale.

Une pondération est réalisée au niveau des indices puisque certains sont repris plusieurs fois (ex : indice cloisonnement, indice ripisylve), d'autres paramètres rentrent dans le calcul de plusieurs indices (ex : taux de recalibrage entrant dans le calcul de l'indice d'anthropisation et modification des écoulements), enfin, le positionnement d'un critère dans la chaîne d'analyse lui confère également un poids plus ou moins important dans la notation finale (ex : « Etat sanitaire de la ripisylve » intégré dans un indice synthétisant 6 paramètres, « Indice granulométrie » donnant lieu à une notation directement reprise dans le calcul de l'indice « Etat du lit »).

INDICE ANNEXES FLUVIALES INDICE CLOISONNEMENT

INDICE BOIS MORT

INDICE RIPISYLVE

INDICE MODIFICATION DES ECOULEMENTS

INDICE ATTERRISSEMENT

INDICE DIVERSITE DES ECOULEMENTS

INCIDE FONCTIONNALITES HYDRAULIQUES

INDICE CLOISONNEMENT

INDICE GRANULOMETRIE

INDICE TRANSPORT SOLIDE

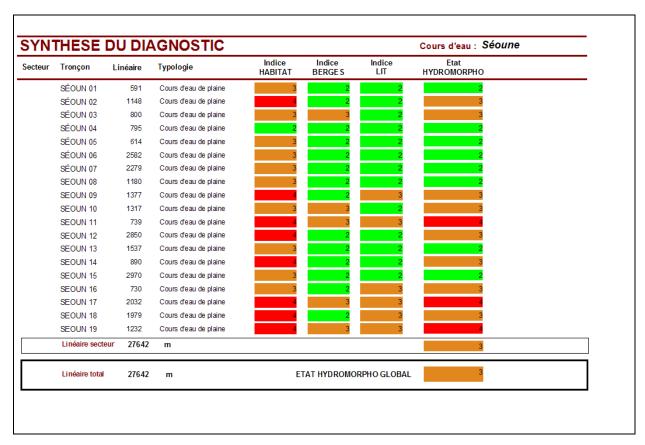
INDICE MEANDRAGE

INDICE MODIFICATION DE LA GEOMETRIE

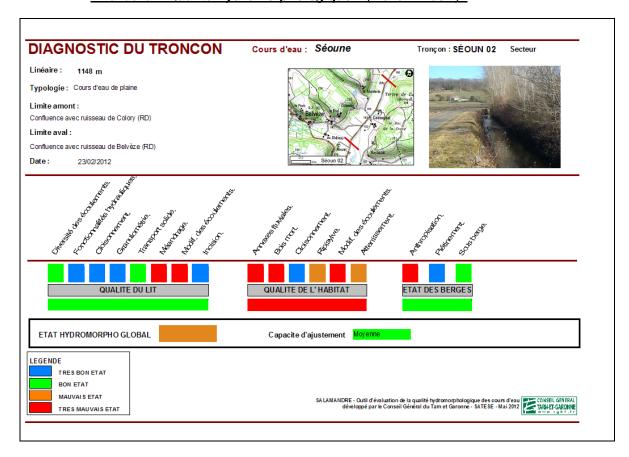
INDICE ALTERATION DU GABARIT

INDICE RIPISYLVE
INDICE SOUS BERGE
INDICE PIETINEMENT
INDICE ANTHROPISATION

QUALITE HYDROMORPHOLOGIQUE

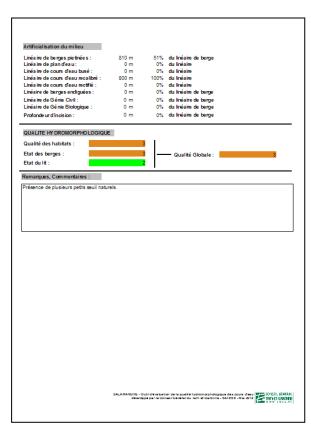

_	EGRATEUR FINAL DE LA YDROMORPHOLOGIQUE »
A+B+C = 3 à 4	PRESERVE
A+B+C = 5 à 7	PEU IMPACTE
A+B+C = 8 à 9	DEGRADE
A+B+C = 10 à 12	FORTEMENT DEGRADE

Cette application permet, une fois les données saisies sur plusieurs tronçons, de produire des documents de synthèse comme :


Le listing des tronçons par cours d'eau avec leurs limites amont et aval :

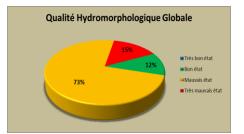
Code tronçon Lo		Limite amont	Limite aval
SÉOUN 01	591	Pont du moulin de Borie	Confluence avec le ruisseau de Pech Colory (RD)
SÉOUN 02	1148	Confluence avec ruisseau de Colory (RD)	Confluence avec ruisseau de Belvèze (RD)
SÉOUN 03	800	Confluence avec ruisseau de Belvèze	Pont de Lairole
SÉOUN 04	795	Pont de Lairol	Ancienne chaussée du moulin de Carrière
SÉOUN 05	614	Ancienne chaussée du moulin de Carrière	Chaussée au niveau de la confluence avec la Ratelle
SÉOUN 06	2582	Chaussée de la confluence avec ruisseau de la Ratelle	Ancienne chaussée du moulin de Nauguy
SÉOUN 07	2279	Chaussée du moulin de Nouguy	Chaussée du moulin de Filhol
SEOUN 08	1180	Chaussée du Moulin de Filhol	150 m en aval du pont de la D60
SEOUN 09	1377	150 m aval de la D60	Chaussée du Moulin de Sainte Livrade
SEOUN 10	1317	Chaussée Moulin Saite Livrade	Chaussée Moulin de Dellac
SEOUN 11	739	Au niveau du seuil du Moulin de Dellac	Seuil Moulin de Coulon
SEOUN 12	2850	Seuil de Coulon	Seuil de Rikiki
SEOUN 13	1537	Chaussée du Rikiki	Confluence avec le canal de fuite du Moulin de Gayraud
SEOUN 14	890	Confluence du canal de fuite du Moulin de Gayraud	Chaussée du Moulin de Ramond
SEOUN 15	2970	Chaussée du Moulin de Ramond	Chaussée du Moulin de Peyré
SEOUN 16	730	Chaussée du Moulin Lapeyre	Chaussée du Moulin de Jouanery
SEOUN 17	2032	Chaussée du Moulin de Jouanery	Chaussée du Moulin de Latapie
SEOUN 18	1979	Chaussée du Moulin de Latapie	Chaussée du Moulin de Faure
SEOUN 19	1232	Chaussée du Moulin de Faure	Confluence avec le Ruisseau de Majoureau (RG)
Linéaire secteur	27642	m	

- <u>La synthèse du diagnostic par tronçon reprenant les trois Indicateurs Intégrateurs ainsi que l'Indice Intégrateur Final de la « Qualité Hydromorphologique » :</u>



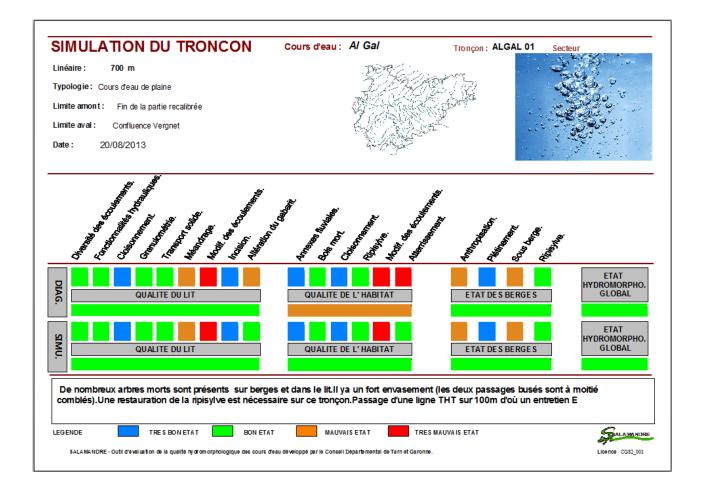
La synthèse du diagnostic par tronçon reprenant l'ensemble des Indices nécessaires pour le calcul des trois Indicateurs Intégrateurs Lit, Habitat et Berge ainsi que l'Indice Intégrateur Final de la « Qualité Hydromorphologique » (Fiche « Elus »):

La synthèse du diagnostic par tronçon avec des données techniques (Fiche « Technicien »):



Application et méthodologie SALAMANDRE – Conseil Départemental du Tarn et Garonne. S.A.T.E.S.E. – Cellule d'Animation Territoriale Rivières et Zones Humides (CATERZH).

- <u>La possibilité de réaliser des exports de la base de données au format Excel permet à la fois une analyse statistique (réalisation de graphiques sous Excel) et représentation cartographique (lien avec une base SIG) :</u>



Simulation des travaux envisagés sur un tronçon et de leur effet « attendu » à l'issu du PPG :

